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Abstract

In this article we introduce the definition of associative superalgebras,
basic characteristics, and give some examples.

2000 Math. Subj. Class.: 17AT0.

1 Introduction

In the last few decades one of the most active and fertile subjects in algebra
is recently developed theory of graded algebras and so called superalgebras.
In [12] Kac wrote that the interest of the field of superalgebras appeared in
physic in the contest of "supersimetry". A lot of results about superalgebras
and graded algebras has been written by Kac, Martinez, Zelmanov, Wall,
Shestakov and others (see for example [7, 8,9, 11, 12, 13, 14, 15]). The main
goal of this paper is to introduce a definition of associative superalgebras,
give some examples, and present some basic properties.

By an algebra we shall mean an associative algebra over the field ®. We
will assume that the definitions of algebra, module, and ideal is well known.
However we shall write some definitions and explain some basic properties
of an algebra. An algebra A is simple, if A% # 0 and the only ideals of A are
0 and A. We say that an algebra A is prime if the product of two nonzero
ideals is nonzero. This is equivalent to the following implication: if a.4b = 0



for some a,b € A, it follows that either a = 0 or b = 0. The example of
a prime algebra is M, (C), the algebra of all n x n complex matrices. The
algebra is called semiprime if it has no nonzero nilpotent ideals (an ideal 7
of an algebra A is called nilpotent, if I = 0 for some number n € N). This is
equivalent to the property that aAa = 0 for some a € A implies that a = 0.
Every prime algebra is semiprime algebra. It turns out that the converse
is in general not true. Namely, if 0 # A is prime algebra, then A x A is
semiprime algebra, which is not prime.

2 Superalgebras

Dear readers, in the following chapter we invite you to the world of superal-
gebras. We will introduce some basic definitions and present some examples
of associative superalgebras.

A superalgebra is a Zs-graded algebra. This means that there exist &-
submodules Ay and A; of A such that A= Ay ® A; and ApAg C Ap (that
means Ay is a subalgebra of A), Ao A1 C A1, A1 49 C Ay and A1 A1 C Ap.
We say that A is the even, and A; is the odd part of A.

An associative superalgebra A is an associative Zy-graded algebra. We say
that A is a trivial superalgebra, if Ay = 0. If a € Ag, k =0 or k = 1, then
we say that a is homogeneous of degree k and we write |a| = k.

A graded ®-submodule B of an associative superalgebra A is such submodule
of an algebra A that
B = BNAy®BNA;.

In this case we write Bo= BNAg and Bi= BNA;. That means B= By®B5;.
If B is a graded subalgebra of A, than B is also an associative superalgebra.
A graded ideal (or superideal) Z of a superalgebra A is an ideal of A, which
is also a graded ®-submodule. That is Z =Z N AgBZ N Ay or T = Zy®L;.

Let us write something about the gradation. The natural question is how
to make a decision about Zs-gradation? Given an associative superalgebra
A= Ay® Ay, we define o : A — Aby (ap+a1)? = ap—ai. Note that o is an
automorphism of A such that o2 = id. Conversely, given an algebra A and
an automorphism o of A with 02 = id, A then becomes a superalgebra by
defining Ay = {a € A| o(a) = a} and A; = {a € A| o(a) = —a} (indeed,



any element a € A can be written as a = a+2“6 + “_2‘10 and “+2“0 e Ao,
% € Aj). That is to say, the Zs-grading can be characterized via the
automorphism with square id.

A submodule B of a superalgebra A is graded if and only if 57 = B. Let the
center Z(.A) of a superalgebra A be the usual center of an algebra A, that is
Z(A) ={a € A|ab=ba¥b e A}. The center is graded, since automorphism
maps the center into itself. That means Z(A) = Z(A),®Z(A);.

In what follows we shall present some examples of associative superalgebras.

Example 2.1 Let A be an algebra and let ¢ € A be an invertible element.
Further, let ¢ be an automorphism of an algebra A, which is defined by
27 = cxc~! for all z € A. We see that o = id if and only if ¢ € Z(A). It
follows that A = Ay & A; is a superalgebra, where Ay = {z € A | zc = cz}
and A; = {z € A | zc = —cz}.

In particular, let A = M, ;4(®) be an algebra of all (r+ s) x (r + s) matrices
over &, r,s € N. For the element ¢ we can choose a matrix [ jg (} ] ,

—is
where I, is an identity matrix of M,(®) and I is an identity matrix of
M (®). Then the even and odd parts are given by

Ay | M@0 0 M. (®) } |

0 M(®) } in A = [ M, (®) 0

where M, ¢(®) is the set of r x s matrices. This algebra is an associative
superalgebra and it is usually written as M (r|s).

Example 2.2 Let A be an algebra over ® and let A = A x A. Furthermore,
let o be an automorphism on A, defined by o(a,b) = (b,a), a,b € A. Then
we have A = Ay ® Ay, where the even part is written in the form Ag =
{(a,a) | a € A} and the odd part in the form A; = {(b,—b) | b € A}. It

¢ D] | C,D e A},

turns out that A = {{ D C

AO%{[g g]| CeAl and Alg{[g ﬂy D e A},

In this case we say that the superalgebra A is given by the exchange auto-
morphism.



Example 2.3 Let A = Q(«, 3) be a 4-dimensional algebra over ® with a
base {1,uv,u,v} and let the multiplication be defined as follows u? = a € ®,
v? = 3 € ®, uwv = —vu. In particular A is the algebra of quaternions over
R. Let us write A9 = ®1 + ®duv and A; = ®u + dv. Then it follows that
A = Ay @ A; is an associative superalgebra which is called the superalgebra
of quaternions.

Let us write some basic properties of associative superalgebras. An asso-
ciative superalgebra A is simple, if it has no proper nonzero graded ideals.
The only graded ideals are 0 and the whole superalgebra 4. Note that
this does not mean that the simple superalgebra is simple as an algebra. If
the product of two nonzero graded ideals of a superalgebra A is nonzero,
the superalgebra A is called a prime-superalgebra. The superalgebra A is
a semiprime-superalgebra, if it has no nonzero nilpotent graded ideals. As
noted in [1], this is equivalent to the condition that a.4b = 0, where a and
b are any homogeneous elements in A, implies ¢ = 0 or b = 0. In fact, the
same conclusion holds true if we assume that only one of these two elements,
say b, is homogeneous.

Let A be a prime-superalgebra. The natural question that appears is: are
the algebras A in Ay prime algebras as well? The next two examples show
that this is not always true.

Example 2.4 Let A be a prime algebra over ® and let A = A x A be a
superalgebra with gradation defined as in the example 2.2. This algebra
is a prime-superalgebra (the product of any two nonzero graded ideals is
nonzero), which is not a prime algebra, since (0 x A)(A x 0) = 0.

Example 2.5 The superalgebra M (r|s) is a prime-superalgebra. The sets

0 0

I:{[g 8] | C e M:(F)} and j:{[o D

] | D € My(F)}
are nonzero ideals of an algebra M (r|s)g such that the product of them is
zero. Thus, the algebra M(r|s) is not a prime algebra.

The answer about the connection between prime-superalgebra (or semiprime-
superalgebra) A and prime algebras (or semiprime algebras) A and Ag
is: if A is an associative semiprime-superalgebra, then A and Ag are also
semiprime algebras. In case A is an associative prime-superalgebra, then
either A is prime algebra or Ay is prime algebra. The proof of those results
we can find in [13].



3 Conclusion

The natural question that appears is how to generalize some classical struc-
tures. Let us briefly describe the background. For example: let A be an
associative algebra. Introducing a new product in A, the so called Jordan
product aob = ab+ba, A becomes a Jordan algebra, usually written as A™.
The question is what is the connection between the structural properties of
algebras A and A™ (for example, every ideal of an algebra A is an ideal of
AT, is the converse true?). Such questions were considered by Herstein in the
1950’s (see [10]). He considered mainly simple algebras. Lately his theory
was generalized. Oun this field a lot of papers were written by Lanski, Mar-
tindale, McCrimmon, Miers, Montgomery and many others. In the similar
way we can introduce Jordan superalgebras. Again, the natural question is:
what is the connection between the structure of superalgebras and Jordan
superalgebras? We refer the reader to see for example [1, 2, 3,4, 5,7, 8,9, 13].

At the end let us write that we can extent superalgebras to G-graded algebras,
where G is an Abelian group. An algebra is G-graded, if there exist subspaces
Ay, g € G, of A, such that A = ©geg Ay and AgAy C Agy, for all g,h € G.
Superagebras are actually a special case of G-graded algebras. In that case
G = Zs. In the field of G-graded algebras we can also define structures such
as modules, ideals, graded prime algebras, ... And therefore new natural
problems appear.
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